"If mice were only people...."

Re-thinking Pre-Clinical In Vivo Models To Increase the Probability of Clinical Success

Beth Ann Murphy, PhD
Nina Jochnowitz

Pharma Industry is Challenged

- Many analyses that probe and propose reasons for the decrease in R&D productivity.
- Consensus is that drug discovery needs to change to be able to deliver novel drugs in the current environment.

Drug Discovery and Development Process

Cost to bring a drug to market was \$2.56 billion in 2013 dollars. (Tufts Center for the Study of Drug Development).

Drug Discovery—Convergence of Disciplines

What is the problem?

Problem: Drugs discovered in the Preclinical stage frequently fail to translate into clinical success (~10% overall success).

- 1991-2000 = 11% success rate (Nat. Rev. Drug Discov. 2004 Aug; 3(8):711-715.)
- 2005-2010 = 6% success rate (Nat. Rev. Drug Discov. 2014 Jun; 13(6):419-431.)

But why doesn't the preclinical work translate to humans?

Animals ≠ Humans

- Genetic
- Surgical Manipulation
- Mimic a chronic condition in an acute time-frame.
- Apply animal behavior to a human behavior.
- Effects in preclinical in vivo disease models are poor predictors of efficacy in the clinic.

Think about it Differently: What is a Drug Actually Doing

Think about it Differently

An integrated and quantitative understanding of the PKPD relationships and how these translate to humans.

Human PK – can we get enough drug to where it needs to be?

Human Target Engagement – can we modulate the target with the right intensity and duration?

Confidence in target-disease linkage.

Human genetics
Validated preclinical model

Identify and test assumptions

Integrate data to reduce assumptions

Identify critical assumptions and assess impact

Translational Biomarker Bubble Diagram

Example: Respond to Data from a Clinical Trial

Lead-Optimization Drug Discovery Program for Cardiovascular Disease

Increase HDL —— Protect from CVD

CETP Catalyzes the exchange of TG and CE between HDL and VLDL/LDL

Inhibit CETP ------ Increase HDL ------ Protect from CVD

What do we need to ask?/ What do we know? /What do we have?

- 1. What is the target? → CETP
- 2. What do we want the drug to do? → Inhibit CETP
- 3. What is the effect of inhibiting CETP? → Increases HDL

(Pharmacokinetics)

Measure of clinical effect = Decreased CVD related deaths

Long time period

- Mice do not developCVD naturally.
- Mice ≠Humans

Translational Biomarker Bubble Diagram: CETP Inhibitor Program

Arrow = Can be measured both in preclinical experiments and in human clinical trials

Case Study

Case Study Anti-Thrombotic Drug For Stroke and AFIB

What are the Main Cause and Effects of Thrombotic Events

- 1. Cause Atrial Fibrillation
- 2. Effect Stroke(s)

What is the Human cost?

- 1. Lives
- 2. Annually, Death rate is nearing 300,000 in the USA
- 3. More than 1,500,000 hospitalizations annually

What is the **Financial** cost?

- 1. Personal
- 2. Broad Economic losses (work related)
- 3. Forty Billion (\$40,000,000) dollars!

Atrial Fibrillation - AFIB

Disease of the heart characterized by irregular and often faster heartbeat.

Causes of an Irregular Heartbeat

 Hypertension, Diabetes, Congestive heart failure, Dehydration, Hyperkalemia, Mitro-valve Prolapse, Poisoning, (cocaine, amphetamine, digitalis...), Anaphylaxis, hyper & hypo-thyroidism, Cardiomyopathy

Indications

- Abnormal electrical discharges (signals) that generate chaotically throughout the upper chambers of the heart (atria).
- Reduction in the Atria to pump blood into the ventricles
 - Response is the heart to beat too rapidly.
- AFIB causes turbulence of the blood which causes clot formation.
- https://youtu.be/fxUITWjrhhs
- Management: Rate Control, Maintenance of normal rhythm, stroke prevention

Cost

- Prevention: Pharmacological and/or surgical (Cardio conversion, Catheter Ablation, surgical ablation, atrial pacemaker)
- Annually more than **130,000** deaths in the USA.
- More than 750,000 hospitalizations occur annually.
- AFib costs the United States about \$6 billion each year, diagnosis and treatment.

Strokes

Sudden death of brain cells from lack of oxygen.

- Caused by blockage of blood flow or rupture of an artery to the brain.
 - Ischemic stroke (part of the brain loses blood flow, bleeding from periphery)
 - Hemorrhagic stroke (brain bleed, Transient Ischemic Attack, TIA >24 hours)

Indications

- Sudden loss of speech, weakness, or paralysis of one side of the body can be symptoms.
- Confirmation by scanning the brain with special X-ray tests, such as CAT scans.

Costs

The death rate and level of disability resulting from strokes can be dramatically reduced by immediate and appropriate medical care.

- Prevention involves minimizing risk factors, such as controlling high blood pressure and diabetes.
- Stroke kills about 140,000 Americans each year—that's 1 out of every 20 deaths.
- Annually 795,000 people in the United States have a stroke. About 610,000 of these are first or new strokes
- About 87% of all strokes are ischemic strokes.
- Stroke costs the United States an estimated \$34 billion

Animal Models: AV Shunt

Project A: Anti-Coagulant Drug Discovery Program: Intrinsic Pathway Inhibitor

Coagulation Factor Targets of Currently Approved SOC or Anti-Coagulant Drugs

What do we need to ask?/ What do we know? /What do we have?

- 1. What is the target? → flXa
- 2. What do we want the drug to do? → Inhibit excess thrombotic activity
- 3. What is the effect of inhibiting factor 9? → Decreased in thrombotic events

Commercial aPTT Screening Kit

Human→ Yes Blood→ Yes

Long time period

Measure of clinical effect = Decreased CVD related deaths

AVS

aPTT

Able to measure drug levels in the circulation (Pharmacokinetics)

AVS Model

- Rabbits do not developCVD naturally.
- Rabbits ≠ Humans

aPTT: A Routine Clinical Test and a Biomarker of Intrinsic Pathway Coagulation

ACTIVATED PARTIAL THROMBOPLASTIN <u>TIME</u> (APTT)

Arteriovenous (AV) Shunt in Rabbits: Model to assess anti-coagulation.

Method:

- Connect an artery and vein to a shunt.
- A thrombogenic stimulus (e.g. thread) is inside the shunt.
- As blood flows through the shunt → clot will form on the thread.
- Weigh the clot.

- Anti-Coagulation = clot weight, blood sampling
- Issues: AVS is a mixed arterial venous antithrombotic model.
- **Needs:** To enhance our confidence in the predictive value of our preclinical models, translational, or creating a plan to further characterize activity of SoC, define target engagement levels etc.

Back

Arteriovenous (AV) Shunt in Rats: Model to assess anti-coagulation.

• Method:

- Connect an artery and vein to a shunt.
- A thrombogenic stimulus (e.g. thread) is inside the shunt.
- As blood flows through the shunt → clot will form on the thread.
- Weigh the clot.

- Anti-Coagulation = clot weight
- Can take blood samples from the AVS rats.

Work Sheet

Translational Biomarker Bubble Diagram:

Arrow = Can be measured both in preclinical experiments and in human clinical trials

Explanation of Bubbles

In vitro assay: Measure of in vitro activity, such as potency or affinity

Drug concentration: The pharmacokinetics of the compound typically measured as unbound plasma concentrations and/or target site exposure

Target engagement biomarker: Measurement of compound binding to target, such as with PET or measuring antibody bound to antigen.

Target Mechanism of Action Biomarker: A proximal biochemical or proximal physiological (eg electrophysiological) response as a result of compound interaction with the target

Physiological Response Biomarker: A physiological or tissue response driven by compound activity at the target, but not directly linked to pathophysiology

Pathophysiology or Disease Process: A biochemical response involved in the disease process or activity in an animal model or on a clinical endpoint that serves as an index of the disease process

Efficacy/Outcome: Activity in an animal model of disease that has been demonstrated to predict clinical efficacy or positive effect on a clinical endpoint endorsed by regulators as sufficient for approval

Case Study: Translational Biomarker Bubble Diagram

* Indicates assay in development

Blue arrow = Need for mathematical translational modelling across species

